
Permutation parity machines for neural synchronization

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 195002

(http://iopscience.iop.org/1751-8121/42/19/195002)

Download details:

IP Address: 171.66.16.153

The article was downloaded on 03/06/2010 at 07:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/19
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 195002 (20pp) doi:10.1088/1751-8113/42/19/195002

Permutation parity machines for neural
synchronization

O M Reyes1,2, I Kopitzke1 and K-H Zimmermann1

1 Institute of Computer Technology, Hamburg University of Technology, D-21071 Hamburg,
Germany
2 Escuela de Ingenierı́a Eléctrica, Electrónica y Telecomunicaciones, Universidad Industrial de
Santander, Bucaramanga, Colombia

E-mail: omreyes@uis.edu.co and k.zimmermann@tuhh.de

Received 10 November 2008, in final form 31 March 2009
Published 21 April 2009
Online at stacks.iop.org/JPhysA/42/195002

Abstract
Synchronization of neural networks has been studied in recent years as an
alternative to cryptographic applications such as the realization of symmetric
key exchange protocols. This paper presents a first view of the so-called
permutation parity machine, an artificial neural network proposed as a binary
variant of the tree parity machine. The dynamics of the synchronization process
by mutual learning between permutation parity machines is analytically studied
and the results are compared with those of tree parity machines. It will turn
out that for neural synchronization, permutation parity machines form a viable
alternative to tree parity machines.

PACS numbers: 05.45.Xt, 84.35.+i, 87.18.Sn, 89.70.−a

1. Introduction

Synchronization is a phenomenon that can be observed in several physical and biological
systems [1]. Recently, it was shown that artificial neural networks can synchronize too [2].
Artificial neural networks were first developed to study and simulate the behavior of biological
neurons. But it was soon recognized that they can be used to solve artificial intelligence
problems in the fields of speech recognition, image analysis and adaptive control [3].

Two artificial neural networks can synchronize by mutual learning. For this, they start
with randomly chosen weights. In each step, they receive common inputs, calculate their
outputs and communicate them to each other. Depending on the learning rule, the weights are
updated. In the case of discrete weights, this process eventually leads to full synchronization
in a finite number of steps.

Tree parity machines are artificial neural networks that can synchronize by mutual
learning. However, they exhibit a new phenomenon. Synchronization by mutual learning
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Figure 1. General structure of a tree parity machine.

is much faster than learning by adapting to examples generated by other networks [2, 4, 5].
In this way, active and passive participants can be distinguished in the learning process.
This observation is key to using neural synchronization for cryptographic key exchange
protocols [6, 7].

This paper introduces a binary version of the tree parity machine whose learning rule is
based on weight permutation. In section 2, the tree parity machine and its mutual learning
process are reconsidered. Section 3 introduces the permutation parity machine, its learning
rule and order parameters that describe the correlation between permutation parity machines
during the mutual learning process. Section 4 studies the dynamics of the mutual learning
process in dependence of the order parameters. Finally, tree and permutation parity machines
are compared with respect to the mutual learning process.

2. Tree parity machines

Tree parity machines are multi-layer feed-forward networks that contain one hidden layer
(figure 1) [2].

Let K,L and N be positive integers. A tree parity machine consists of K hidden units
that are perceptrons with independent receptive fields. Each unit has N input neurons and one
output neuron. All input values are binary,

xij ∈ {−1, +1}, 1 � i � K, 1 � j � N, (1)

and the weights weightening the connections between input and hidden units are integral
numbers between −L and +L,

wij ∈ {−L, . . . , 0, . . . , +L}, 1 � i � K, 1 � j � N, (2)

where L denotes the synaptic depth of the network.
The output of a hidden unit is determined by the weighted sum over the current input

values:

hi = 1√
N

wi ·xi = 1√
N

N∑
i=1

wijxij , 1 � i � K. (3)

The output of the ith hidden unit is given by the sign of the random field hi :

σi = sgn(hi), 1 � i � K. (4)

The special case, hi = 0, is mapped to σi = −1 in order to ensure binary output. A hidden unit
is considered to be active if the weighted sum over its inputs is positive (σi = +1); otherwise,
it is inactive (σi = −1).
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The output of a tree parity machine is defined by the parity of the hidden units:

τ =
K∏

i=1

σi. (5)

The output indicates whether the number of inactive hidden units is even (τ = +1) or odd
(τ = −1). There are 2K−1 internal representations (σ1, . . . , σK) of the hidden units that lead
to the same output value τ .

Two interacting neural feed-forward networks can synchronize by mutual learning. For
this, let A and B denote two tree parity machines with identical parameters K,L and N.
Both networks start with randomly chosen weight vectors wA

i and wB
i , 1 � i � K . In each

time step, both machines receive common input vectors xi , 1 � i � K , and compute the
corresponding outputs τA and τB . Then both networks exchange their output bits. If the
output bits disagree (τA �= τB), the weights remain unchanged. Otherwise, the weights are
updated according to a suitable learning rule.

For instance, the Hebbian learning rule says that in the case of agreeing output bits
(τA = τB), the weights of hidden units that have the same output as the communicated output
are updated. The new weights are given by

wij :=
{

g(wij + xij · σi) if σi = τA,

wij otherwise,
1 � i � K, 1 � j � N, (6)

where the function g(w) guarantees that the new weights stay in the allowed range by bouncing
back values to the nearest boundary value:

g(w) =
⎧⎨
⎩

L if w > L,
w if −L � w � L,
−L otherwise.

(7)

This synchronization step can be repeated until the corresponding weights in both networks
eventually are in synch; that is, the networks have equal weights: wA

i = wB
i , 1 � i � K .

Once the two machines are synchronized they will remain synchronized since the movements
of the weights only depend on the inputs and weights which are already identical.

Instead of communicating single bits during the mutual learning phase, a block mode
called bit-packaging was proposed [7]. In this mode, a sequence of B � 1 synchronization
steps is performed and the corresponding output bits are stored in registers. After B
synchronization steps, the contents of the registers are exchanged between the networks
and the networks perform B consecutive steps to adapt their weights.

3. Permutation parity machines

Permutation parity machines are multi-layer feed-forward networks proposed as a variant of
tree parity machines with binary weights [8].

3.1. Structure

Let G,K and N be positive integers. A permutation parity machine can be considered as
a neural network with K hidden units that are perceptrons with independent receptive fields
(figure 2).

Each unit has N input neurons and one output neuron. All input values are binary,

xi,j ∈ {0, 1}, 1 � i � K, 1 � j � N. (8)
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Figure 2. General structure of a permutation parity machine.

Unlike the tree parity machine, the synaptic weights are drawn from a pool of binary
data given by a so-called state vector s ∈ {0, 1}G. More specifically, take an K × N

matrix π = (πij ) whose entries are given as the images of the one-to-one mapping
π : {1, . . . , K} × {1, . . . , N} → {1, . . . ,G} : (i, j) �→ πi,j . Then assign the weights by
taking the entries of the state vector s according to the positions given by the matrix entries,

wi,j = sπi,j
, 1 � i � K, 1 � j � N. (9)

Since the mapping should be one to one, the length of the state vector must satisfy G � K ·N .
This mapping can be implemented by using a linear feedback shift register with period G for
addressing the components of the state vector.

The output of the ith hidden unit requires to determine the component-wise exclusive
disjunction (exclusive or) between weights and inputs:

hi = xi ⊕ wi = (xi,j ⊕ wi,j )j , 1 � i � K. (10)

The vectorized random field hi provides the number of positions at which inputs and weights
differ:

hi = |{j | hij = xi,j ⊕ wi,j = 1, 1 � j � N}|, 1 � i � K, (11)

where | · | denotes the size of a set.
The output of the ith hidden unit yields a threshold value for the random field hi . It equals

1 if the random field is larger than N/2, and equals 0 otherwise; that is,

σi = θN(hi), 1 � i � K, (12)

where for each non-negative integer h,

θN(h) =
{

1, h > N/2,

0, h � N/2.
(13)
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Figure 3. Some possible output layer configurations for permutation parity machines: (a) single-
bit output with two hidden units, (b) two-bit output with three hidden units and (c) two-bit output
with four hidden units.

The output of a permutation parity machine is given by the parity of the hidden units:

τ =
K⊕

i=1

σi. (14)

The output τ indicates whether the number of active hidden units (σi = 1) is even (τ = 0) or
odd (τ = 1).

Several configurations of the output layer depending on the number of hidden units
were proposed by Kopitzke [8] (figure 3). However, configurations with two or more
output bits increase the machine complexity and require a re-definition of the learning rule.
Therefore, we only analyze permutation parity machines with two hidden units (K = 2) and
a single output bit; the case K = 2 already allows a direct comparison with the tree parity
machine.

3.2. Learning rule

Two interacting permutation parity machines can synchronize by mutual learning. For this,
let A and B denote two permutation parity machines with identical parameters G,K and N.
The learning process involves two kinds of rounds, inner and outer rounds. An outer round
consists of several inner rounds. A series of inner rounds is employed to fill an initially empty
buffer of length G position by position in each network. When the buffers are completely
filled, an outer round replaces each state vector by the respectively filled buffer.

The machines A and B start with randomly chosen state vectors sA and sB and empty
buffers bA and bB of length G, respectively. Each inner round consists of the following steps:

• Choose uniformly at random a K × N matrix π and a binary input vector x = (xij ) of
length K · N ; these data are known to both networks.

• Generate the weights wij according to (9).
• Compute the output bits τA and τB according to (14). If the output bits are equal, then in

each machine the output of the first perceptron, σ1, is stored in the next empty position of
the corresponding buffer. Otherwise, the buffers remain unchanged.

We speak of a synchronization step if during the learning phase the output bits τA and
τB are equal; in this case, the buffers are filled by one bit. However, the output of the first
perceptron, σA

1 , in machine A can be different from the output of the first perceptron, σB
1 , in

machine B. The inner rounds are repeated until the buffers are completely filled. Then the
state vectors are updated with their buffers (i.e., sA := bA and sB := bB), and the outer round
ends. A new outer round starts with emptying the buffers and providing a new series of inner
rounds.
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This learning process can be repeated until the networks are eventually synchronized.
That means, the state vectors are aligned in such a way that they remain aligned even if they
are updated by further applications of the learning rule. We will later see that this learning
process can be described by a first-order Markov chain so that synchronization amounts to
stationarity of the chain.

3.3. Order parameters

Order parameters are used to describe the correlation between two permutation parity machines
during the mutual learning process. For this, the probability distributions of the state vectors
and the weights in corresponding hidden units are studied. First, take the probability of finding
a weight with wA

ij = a in the ith hidden unit of machine A and a corresponding weight with
wB

ij = b in the ith hidden unit of machine B, 1 � i � K:

pi
a,b = P

(
wA

ij = a,wB
ij = b

)
, 1 � j � N, a, b ∈ {0, 1}. (15)

Second, consider the probability of finding an entry with sA
l = a in the state vector of machine

A and an associated entry with sB
l = b in the state vector of machine B:

pa,b = P
(
sA
l = a, sB

l = b
)
, 1 � l � G, a, b ∈ {0, 1}. (16)

In simulations these probabilities can be estimated by relative frequencies:

pi
a,b = 1

N

∣∣{j ∣∣wA
ij = a,wB

ij = b, 1 � j � N
}∣∣, (17)

pa,b = 1

G

∣∣{l ∣∣ sA
l = a, sB

l = b, 1 � l � G
}∣∣. (18)

The level of synchronization can be estimated by using the expected values of these
probabilities. Such kinds of expectations are generally studied in online learning processes
[9]. The normalized overlap between the ith hidden units is given by

ρAB
i = pi

0,0 + pi
1,1, (19)

while the normalized overlap between the state vectors is defined as

ρAB = p0,0 + p1,1. (20)

In practice, these overlaps can be calculated by using Hamming distances:

ρAB
i = 1 − 1

N
dH

(
wA

i ,wB
i

)
, 1 � i � K, (21)

and

ρAB = 1 − 1

G
dH(sA, sB). (22)

For further reference, we also consider the corresponding non-normalized overlaps,

ri = N · ρi = N − dH
(
wA

i ,wB
i

) = N − dH
(
hA

i ,hB
i

)
, 1 � i � K, (23)

where the latter equality follows from the definitions, and

R = G · ρ = G − dH(sA, sB). (24)

Clearly, uncorrelated hidden units have overlap ρi = 0.5, while the overlaps ρi = 0 and
ρi = 1 indicate anti-parallel

(
wA

i = wB
i

)
and parallel weights

(
wA

i = wB
i

)
, respectively. The

situation is similar for state vectors.
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The overlap R between the state vectors and the overlap r between hidden units are related
by the hypergeometric distribution. For this, note that the hidden units’ weights are drawn
uniformly at random from the state vectors. The probability that exactly r positions of the
weight vector of a hidden unit are drawn from R overlapping positions of the corresponding
state vector is given as

fr;G,R,N =
(
R

r

)(
G−R

N−r

)
(
G

N

) , 0 � r � N. (25)

In the case of G � N such that the ratio R/G = ρ and N are held constant, the hypergeometric
distribution approaches the binomial distribution [10]. That is,

fr;G,R,N ≈
(

N

r

)
ρr(1 − ρ)N−r . (26)

We next study the outputs of hidden units. To this end, consider the ith hidden unit
in two permutation parity machines A and B with identical parameters, and let qa

r,N denote
the probability that these hidden units with non-normalized overlap r both provide output
a ∈ {0, 1}, 1 � i � K . First, the probability that the overlap contains m zeros is given by

Pm = 1

2r

(
r

m

)
, 0 � m � r. (27)

Moreover, the probability that the non-overlapping section contains n zeros amounts to

Qn = 1

2N−r

(
N − r

n

)
, 0 � n � N − r. (28)

Since the overlap r satisfies (23), we may either consider the weights wA and wB or the
corresponding vectorized random fields hA and hB in the respective hidden units of the
machines A and B. Thus if the vectorized random field hA has m zeros in the overlap and n
zeros in the non-overlapping section, then the vectorized random field hB must have m zeros
in the overlap and N − r − n zeros in the non-overlapping part:

hA :

m︷ ︸︸ ︷
0 . . . 0

r−m︷ ︸︸ ︷
1 . . . 1

n︷ ︸︸ ︷
0 . . . 0 1 . . . 1

hB : 0 . . . 0 1 . . . 1 1 . . . 1 0 . . . 0︸ ︷︷ ︸
N−r−n

.

Let hA and hB denote the random fields corresponding to the vectorized random fields hA and
hB in corresponding hidden units, respectively. We have θN(hA) = 0 and θN(hB) = 0 if and
only if the number of zeros in hA and hB is at least N/2. Equivalently, hA = m + n � N/2
and hB = m + N − r − n � N/2. It follows that m � r/2 and N/2 − m � n � N/2 − r + m.
But the probabilities Pm and Qn are independent and so the probability q0

r,N can be calculated
as

q0
r,N = 1

2N

r∑
m=
 r

2 �

� N
2 −r+m∑

n=
 N
2 −m�

(
r

m

)(
N − r

n

)
. (29)

In view of the probability q1
r,N , observe that the arguments of the threshold function θN are

uniformly distributed since they are given by the randomly chosen matrix π and the input
vector x. But if the parameter N is odd, the threshold function θN maps (N + 1)/2 values to 0
and (N + 1)/2 values to 1. So the outputs 0 and 1 are obtained with the same probability, and
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hence we have q0
r,N = q1

r,N . However, if the parameter N is even, the threshold function θN

maps N/2 values to 0 but only N/2 − 1 values to 1. In this case, we obtain

q1
r,N = 1

2N

r∑
m=
 r+1

2 �

� N−1
2 −r+m∑

n=
 N+1
2 −m�

(
r

m

)(
N − r

n

)
. (30)

Let qr,N denote the probability that two corresponding hidden units in the networks A and B
have non-normalized overlap r and yield the same output. Clearly, qr,N = q0

r,N + q1
r,N and thus

qr,N =
{

2 · q0
r,N , if N odd,

q0
r,N + q1

r,N , otherwise.
(31)

From (29)–(31), it follows that

qr,N =
{

1 − qN−r,N , if N odd,

1 − qN−r−1,N , otherwise.
(32)

Thus if the parameter N is odd, then the probability qr,N as a function of the normalized overlap
ρ = r/N has odd symmetry at ρ = 0.5 (figure 4). Therefore, (29) and (31) imply

q0,N = 0 and qN,N = 1, N odd. (33)

On the other hand, if the parameter N is even, then (32) implies that the probability
qr,N has no such symmetry. In particular, from (29) we find that q0

0,N = 1
2N

(
N

N/2

)
and

q0
N,N = 1

2 + 1
2N+1

(
N

N/2

)
, and from (30) that q1

0,N = 0 and q1
N,N = 1

2 − 1
2N+1

(
N

N/2

)
. Thus by (31),

q0,N = 1

2N

(
N

N/2

)
and qN,N = 1, N even. (34)

Finally, it is well known that in the thermodynamic limit, when N approaches infinity, the
error probability 1 − qr,N tends to the generalization error between two perceptrons [9]:

ε = 1

π
arccos(2ρ − 1), −1 � 2ρ − 1 � 1, (35)

where ρ is the normalized overlap between the perceptrons. The error probabilities given
by εr,N = 1 − qr,N are good finite approximations of the generalization error as illustrated
in figure 4. In this figure, the solid line indicating the generalization error (N → ∞) was
computed from (35), while the symbols were computed from (29) to (31) by using (23) to
obtain the normalized overlap ρ from the non-normalized overlap r.

4. Dynamics of the mutual learning process

First, the effects of the learning rule on the inner rounds will be considered as a function of
the overlap. Second, the learning process is described as a Markov chain in order to find
necessary conditions for achieving synchronization.

As mentioned in section 3.1, the mutual learning process will be studied in the case of
two hidden units per machine (K = 2), although several of the expressions developed will
also hold in the general case.

4.1. Effects of learning rule

During the mutual learning process of two identical permutation parity machines A and B, a
synchronization step occurs when the outputs of both machines, τA and τB , are equal. Then
the buffers of both machines are updated. Two situations can occur during a synchronization

8
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Figure 4. Error probabilities between two perceptrons in dependence of normalized overlap. The
solid line indicates the generalization error.

step:

• The outputs of the first hidden units are equal
(
σA

1 = σB
1

)
and so the overlap between the

buffers increases.
• Otherwise, σA

1 �= σB
1 and thus the overlap between the buffers decreases.

The first step is called increasing, while the second step is called decreasing. A sequence of
only increasing steps eventually leads to a parallel alignment such that the overlap ρ becomes
1 and thus sA = sB . Similarly, a series of only decreasing steps eventually provides an
anti-parallel alignment in which the overlap becomes 0 and thus sA = sB , where the binary
complement is taken component-wise.

The probability that the ith hidden units produce the same output when R is the overlap
of the state vectors is given by

PR

(
σA

i = σB
i

) =
N∑

r=0

qr,N · fr;G,R,N , 1 � i � K, (36)

while the probability that they produce different outputs can be obtained as

PR

(
σA

i �= σB
i

) =
N∑

r=0

(1 − qr,N ) · fr;G,R,N , 1 � i � K, (37)

where qr,N and fr;G,R,N are given by (31) and (25), respectively. We have PR

(
σA

i = σB
i

) =
1 − PR

(
σA

i �= σB
i

)
. Furthermore, if the parameter N is odd, then by using (32), (37) and the

symmetry of the hypergeometric distribution, fr;G,R,N = fN−r;G,G−R,N , we obtain

PR

(
σA

i �= σB
i

) = PG−R

(
σA

i = σB
i

)
. (38)

In the case of G � N , it follows from (26) that the probabilities PR

(
σA

i = σB
i

)
and

PR

(
σA

i �= σB
i

)
are functions of the normalized overlap ρ = R/G and the number of inputs

per hidden unit N. Moreover, when G tends to infinity, the above probabilities are continuous
and the hidden units become independent, and when N also goes to infinity, the probability
PR

(
σA

i �= σB
i

)
corresponds to the generalization error ε given by (35) (figure 5). The symbols

in this figure were computed from (37) in dependence of the normalized overlap ρ = R/G,
where 0 � R � G.

9
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Figure 5. Error probability of corresponding hidden units in two permutation parity machines in
dependence of the normalized overlap for the parameter G = 64. The continuous line indicates
the generalization error: (a) N odd, (b) N even.

During the mutual learning process, the buffers are updated in the case of τA = τB . Thus
the probability of a synchronization step for K = 2 is given by

PR(τA = τB) = PR

[(
σA

1 = σB
1 ∧ σA

2 = σB
2

) ∨ (
σA

1 �= σB
1 ∧ σA

2 �= σB
2

)]
= PR

(
σA

1 = σB
1 , σA

2 = σB
2

)
+ PR

(
σA

1 �= σB
1 , σA

2 �= σB
2

)
. (39)

Moreover, by (36),

PR

(
σA

1 = σB
1 , σA

2 = σB
2

) =
N∑

r1=0

N∑
r2=0

qr1,N · fr1;G,R,N · qr2,N · fr2;G−N,R−r1,N (40)

and

PR

(
σA

1 �= σB
1 , σA

2 �= σB
2

)
=

N∑
r1=0

N∑
r2=0

(1 − qr1,N ) · fr1;G,R,N · (1 − qr2,N ) · fr2;G−N,R−r1,N . (41)

We next study the behavior of the probability of a synchronization step as a function of
the normalized overlap. First, we infer from (26) that for a fixed overlap ρ, the influence of the
length G of state vectors on the probability of synchronization steps with mutual interaction
is rather weak especially when G � N . This behavior is illustrated in figure 6. In contrast to
this, the parameter N significantly affects this probability. In particular, if the parameter N is
odd, then by using (32) and (41), and taking into account the symmetry of the hypergeometric
distribution, fr;G,R,N = fN−r;G,G−R,N , we obtain

PG−R

(
σA

1 �= σB
1 , σA

2 �= σB
2

) = PR

(
σA

1 = σB
1 , σA

2 = σB
2

)
. (42)

Therefore, we derive

PR(τA = τB) = PG−R(τA = τB). (43)

In this case, the probability of synchronization steps has even symmetry around the normalized
overlap ρ = 0.5. From the definitions we can find the probability PG(τA = τB). For this,
note that from (25)

fr;G,G,N =
{

1 if r = N,

0 otherwise.

10
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Figure 6. Probability of synchronization steps with mutual interaction in dependence of normalized
overlap. (a) N = 3, (b) N = 4.

Thus (40) and (41) respectively become

PG

(
σA

1 = σB
1 , σA

2 = σB
2

) = q2
N,N

and

PG

(
σA

1 �= σB
1 , σA

2 �= σB
2

) = (1 − qN,N)2.

By (33) and (34), we have qN,N = 1 for all N. Thus it follows from the last two equations that

PG

(
σA

1 = σB
1 , σA

2 = σB
2

) = 1 and PG

(
σA

1 �= σB
1 , σA

2 �= σB
2

) = 0. (44)

Consequently, we find that PG(τA = τB) = 1. By the symmetry given in (43) we deduce
that P0(τ

A = τB) = 1 as well. This means that if the parameter N is odd and a parallel
(ρ = 1) or an anti-parallel (ρ = 0) alignment is reached, then the networks always produce
equal outputs: τA = τB . Moreover, this probability becomes minimal when the correlation
between the state vectors becomes minimal (ρ = 0.5) such that PR(τA = τB)|ρ=0.5 = 0.5.
Figure 7(a) illustrates the probability PR(τA = τB) as a function of the overlap ρ for some
odd values of the parameter N.

Similarly, when the parameter N is even and a parallel alignment (ρ = 1) is given, we find
that PG(τA = τB) = 1. However, if the overlap is 0, we obtain from (34) that 0 < q0,N < 1.
Moreover, it follows from (40) and (41) that the probability of a synchronization step is
P0(τ

A = τB) = (q0,N )2 + (1 − q0,N )2 = 1 − 2q0,N (1 − q0,N ) < 1. Nevertheless, this
probability is increasing when the parameter N (even) is increasing (figure 7(b)).

In the mutual learning process, the probability of increasing steps corresponds to the
conditional probability that a synchronization step occurs in which the outputs of the
perceptrons are equal:

PR

(
σA

1 = σB
1

∣∣ τA = τB
) = PR

(
σA

1 = σB
1 , τA = τB

)
PR

(
τA = τB

) , (45)

and the probability of decreasing steps is given as

PR

(
σA

1 �= σB
1

∣∣ τA = τB
) = 1 − PR

(
σA

1 = σB
1

∣∣ τA = τB
)
. (46)

In particular, in the case of K = 2, we obtain from (39) that

PR

(
σA

1 = σB
1

∣∣ τA = τB
) = PR

(
σA

1 = σB
1 , σA

2 = σB
2

)
PR

(
σA

1 = σB
1 , σA

2 = σB
2

)
+ PR

(
σA

1 �= σB
1 , σA

2 �= σB
2

) . (47)

11
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Figure 7. Probability of synchronization steps with mutual interaction in dependence of normalized
overlap for the parameter G = 64. (a) N odd, (b) N even.
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Figure 8. Probability of increasing steps for synchronization with mutual interaction under the
condition τA = τB and in dependence of normalized overlap. (a) N = 3, (b) N = 4.

In the thermodynamic limit, when N approaches infinity, this probability can be written in
terms of the generalization error as

PR

(
σA

1 = σB
1

∣∣ τA = τB
) = (1 − ε)2

(1 − ε)2 + ε2
. (48)

It follows that neither the probability of increasing steps nor that of decreasing steps is
significantly affected by the length G of the state vectors similar to the probability of
synchronization steps (figure 8). Moreover the probability of increasing (decreasing) steps is
an increasing (decreasing) function of the normalized overlap ρ (figures 8 and 9).

If the parameter N is odd, then in view of (42) the probability of increasing (decreasing)
steps, which are symmetric around the overlap ρ = 0.5, amounts to

PR

(
σA

1 = σB
1

∣∣ τA = τB
) = 1 − PG−R

(
σA

1 = σB
1

∣∣ τA = τB
)

= PG−R

(
σA

1 �= σB
1

∣∣ τA = τB
)
, N odd. (49)

12
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Figure 9. Probability of increasing steps for synchronization with mutual interaction under the
condition τA = τB and in dependence of normalized overlap for the parameter G = 64. (a) N
odd, (b) N even.

Using this symmetry and (44) we find that

PG

(
σA

1 = σB
1

∣∣ τA = τB
) = P0

(
σA

1 �= σB
1

∣∣ τA = τB
) = 1, (50)

as illustrated in figure 9(a). This means that once the state vectors are parallel (anti-parallel),
not only the output bits in all subsequent inner rounds are the same (τA = τB), but also a
sequence of only increasing (decreasing) steps is always performed preserving the alignment
of the state vectors during the outer rounds. Therefore, an odd number of inputs per hidden
unit eventually produces a bivergent behavior, in which there are two possible alignments for
the state vectors that attain synchronization: parallel (sA = sB) or anti-parallel (sA = sB),
and both states are equally likely.

On the other hand, if the parameter N is even, we obtain from (44) and (47)
that the probability of increasing steps becomes 1 when the overlap ρ equals 1:
PG

(
σA

1 = σB
1

∣∣ τA = τB
) = 1. However, for the overlap ρ = 0, the probability of decreasing

steps becomes

P0
(
σA

1 �= σB
1

∣∣ τA = τB
) = (1 − q0,N )2

(q0,N )2 + (1 − q0,N )2
. (51)

Since 0 < q0,N < 1, it follows that this probability is smaller than 1 (figure 9(b)). Thus in the
case of N even, only increasing steps eventually lead to full synchronization.

The increasing and decreasing steps are related to the attractive and repulsive steps during
the mutual learning process between tree parity machines [11]. However, attractive steps have
the property to diminish the distance between corresponding weights, while repulsive steps
increase this distance.

4.2. Synchronization

The results obtained in the previous section can be used to show that during the mutual learning
process synchronization can be achieved, with high probability, in a finite number of rounds.
Moreover, we estimate the synchronization time of the mutual learning process.

13
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Figure 10. Expected value of the inner round duration in dependence of normalized overlap for
the parameters G = 128 and N = 9. The shaded area denotes the standard deviation measured
via 100 simulations.

First, the number of inner rounds performed during an outer round is estimated. This
requires to study how the buffers are filled during mutual learning taking into account the
variation of the overlap between the state vectors.

Let psync denote the probability that a synchronization step between the networks occurs.
When a synchronization step takes place, the machines fill the buffers by the output bits of
their first perceptrons. The probability of a synchronization step with the given overlap R
between the state vectors was stated in (39). This probability does not change during a series
of inner rounds since the overlap R remains constant.

Let X denote the random variable that provides the number of times the outputs of the
networks are exchanged before the buffers are filled; that is, the number of inner rounds during
an outer round. By definition, the variable X takes on values �G. The random variable X
follows a negative binomial distribution [12], and the probability that the variable X takes on
the value T is given by

P(X = T ) =
(

T − 1

G − 1

)
(psync)

G(1 − psync)
T −G. (52)

The expected value of the random variable X is given by

E(X) = G

psync
(53)

and illustrated in figure 10 as a function of the normalized overlap ρ = R/G. The solid line
in this figure is computed from (53), while the symbols are denoting averages obtained by
100 simulations with the parameters G = 128 and N = 9. If the state vectors are aligned in
parallel or anti-parallel, the number of inner rounds become minimal; while if the state vectors
are uncorrelated (ρ = 0.5), the expected number of inner rounds becomes maximal.

After each outer round, the state vectors are replaced by the buffers of the respective
machines. It follows that the learning process given by the sequence of outer rounds
(R(t) | t ∈ N0) can be described as a first-order Markov chain [13]. The transition probabilities
of this Markov chain correspond to the conditional probabilities that given an overlap R(t) = R

between the state vectors, the overlap in the next outer round is R(t + 1) = R′:

pR,R′ = P(R(t + 1) = R′ | R(t) = R), R,R′ ∈ S, (54)

14
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where S = {n ∈ N0 | 0 � n � G} is the state space of the Markov chain. The overlap R′ in
the outer round t +1 is given by the number of increasing steps during the current round t. Thus
pR,R′ is the probability of performing R′ increasing steps in a sequence of G synchronization
steps during one outer round with the overlap R(t) = R. This probability follows a binomial
distribution:

pR,R′ =
(

G

R′

)
(pR,inc)

R′
(1 − pR,inc)

G−R′
, (55)

where pR,inc denotes the probability that an increasing step takes place when the overlap
between the state vectors equals R; this probability was already given in (47). Since the
probability pR,inc is independent of round t, the sequence (R(t) | t ∈ N0) amounts to a finite
homogeneous Markov chain with state space S [14].

The transition probabilities of the Markov chain are given by the (G+ 1)× (G+ 1) matrix
P = (pR,R′). As stated before, the probability of increasing steps pR,inc depends on the ratio
R/G. Moreover, if the parameter G is large enough (while pR,inc stays fixed), the binomial
distribution can be approximated by the normal distribution with mean G ·pR,inc and variance
G · pR,inc · (1 − pR,inc) [12].

Second, the convergence of the Markov chain is investigated. For this, we first consider
the case when the parameter N � 3 is odd. From the definitions we find that p0,inc = 0 and
pG,inc = 1 (figure 9(a)). Therefore, it follows from (55) that p0,0 = (1 − p0,inc)

G = 1 and
pG,G = (pG,inc)

G = 1 as well. These states are called absorbing, because once the Markov
chain reaches an absorbing state, it cannot leave it [14]. These states provide synchronization
that result in anti-parallel (ρ = 0) or parallel (ρ = 1) alignment of the state vectors. Claim
that the remaining states R, 0 < R < G, are transient; that is, given that the Markov chain
starts in the state R there is a non-zero probability of never returning to state R.

First, consider the cases R = 1 and R = G − 1. From the definitions, we obtain that
P1

(
σA

1 = σB
1 , σA

2 = σB
2

) = 0. It follows from (47) that p1,inc = 0 and, by the symmetry given
in (49), pG−1,inc = 1. By (55), we have that p1,0 = 1 = pG−1,G. Thus the states R = 1 and
R = G − 1 are transient, since they always lead to the absorbing states R′ = 0 and R′ = G,
respectively.

Second, consider the case 2 � R � G − 2. Claim that the probabilities
PR

(
σA

1 = σB
1 , σA

2 = σB
2

)
and PR

(
σA

1 �= σB
1 , σA

2 �= σB
2

)
are larger than 0. Indeed, it is

sufficient to show that for some values of r1 and r2, the term qr1,N ·fr1;G,R,N ·qr2,N ·fr2;G−N,R−r1,N

of PR

(
σA

1 = σB
1 , σA

2 = σB
2

)
is larger than 0, and the term (1 − qr1,N ) · fr1;G,R,N · (1 − qr2,N ) ·

fr2;G−N,R−r1,NPR

(
σA

1 �= σB
1 , σA

2 �= σB
2

)
is larger than 0, too.

For this, note that fr;G,R,N > 0 if 0 � r � R � G − N + r . Thus fr1;G,R,N ·
fr2;G−N,R−r1,N > 0 if 0 � r1 + r2 � R � G − 2N + r1 + r2. Moreover, from (29) and
(31) it follows that qr,N > 0 if 0 < r � N and 1 − qr,N > 0 if 0 � r < N . Thus
qr1,N ·fr1;G,R,N ·qr2,N ·fr2;G−N,R−r1,N > 0 and (1−qr1,N )·fr1;G,R,N ·(1−qr2,N )·fr2;G−N,R−r1,N >

0 provided that r1 + r2 � R � G − 2N + r1 + r2 and 0 < r1, r2 < N . Then r1 + r2 � 2 and,
since by definition G � 2N,G − 2N + r1 + r2 � G − 2, hence the values r1 and r2 will exist.
The claim follows.

Using this result, the probability of increasing steps (47) satisfies

0 < pR,inc = PR

(
σA

1 = σB
1

∣∣ τA = τB
)

< 1, 2 � R � G − 2.

Thus the transition probability pR,R′ is larger than 0 for 2 � R � G − 2 and 0 � R′ � G.
That is, there is a non-zero probability of reaching an absorbing state from the state
R, 2 � R � G − 2, which implies a non-zero probability of never returning to the
state R.
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Therefore, the Markov chain only contains absorbing and transient states and is thus called
absorbing [14]. It follows that regardless of the initial state, the probability of reaching an
absorbing state after t rounds tends to 1 as t tends to infinity [15]. Consequently, the Markov
chain always converges when the parameter N is odd.

On the other hand, when the parameter N � 2 is even, we have already seen from
(44) and (47) that pG,inc = 1 and thus pG,G = 1; that is, the state R = G is absorbing.
We shall show that the remaining states R, 0 � R < G are transient. First, consider the
case R = G − 1. By (34), we have qN,N = 1. Thus it follows from the definitions that
PG−1

(
σA

1 = σB
1 , σA

2 = σB
2

)
> 0 and PG−1

(
σA

1 �= σB
1 , σA

2 �= σB
2

) = 0. Thus the probability
of increasing steps (47) equals pG−1,inc = 1 and hence by (55) the transition probability
pG−1,G is 1. Therefore, the state R = G − 1 is transient, since it always leads to an absorbing
state.

Second, consider the case 0 � R � G − 2. Claim that the probabilities
PR

(
σA

1 = σB
1 , σA

2 = σB
2

)
and PR

(
σA

1 �= σB
1 , σA

2 �= σB
2

)
are greater than 0. Indeed, it is

sufficient to prove that for some values of r1 and r2, the term qr1,N · fr1;G,R,N · qr2,N ·
fr2;G−N,R−r1,N of PR

(
σA

1 = σB
1 , σA

2 = σB
2

)
and the term (1 − qr1,N ) · fr1;G,R,N · (1 − qr2,N ) ·

fr2;G−N,R−r1,N of PR

(
σA

1 �= σB
1 , σA

2 �= σB
2

)
are larger than 0. For this, we already mentioned

that fr1;G,R,N ·fr2;G−N,R−r1,N > 0 if 0 � r1 + r2 � R � G−2N + r1 + r2. Moreover, it follows
from (31) and (34) that qr,N > 0 if 0 � r � N and 1−qr,N > 0 if 0 � r < N . Thus the terms
qr1,N · fr1;G,R,N · qr2,N · fr2;G−N,R−r1,N and (1 − qr1,N ) · fr1;G,R,N · (1 − qr2,N ) · fr2;G−N,R−r1,N

are larger than 0 provided that r1 + r2 � R � G − 2N + r1 + r2 and 0 � r1, r2 < N . Then
r1 + r2 � 0 and, since by definition G � 2N,G − 2N + r1 + r2 � G − 2, it follows that the
values r1 and r2 will exist. The claim follows.

Using this result, the probability of increasing steps (47) satisfies

0 < pR,inc = PR

(
σA

1 = σB
1

∣∣ τA = τB
)

< 1, 0 � R � G − 2.

Therefore the transition probability pR,R′ is larger than 0 for 0 � R � G−2 and 0 � R′ � G.
This means, there is a non-zero probability of reaching the absorbing state from the state
R, 0 � R � G − 2, and therefore there is a non-zero probability of never returning to the
state R. Thus, if N is even, the Markov chain is absorbing and always converging on the only
absorbing state.

In order to illustrate the stationarity of the Markov chain, the chain is described by the
sequence of probability distributions q(t) = (q0(t), . . . , qG(t)) for all outer rounds t � 0,
where the entry qR(t) denotes the probability that the state vectors have overlap R during
outer round t. We may assume that at the beginning of the learning phase, the probability of
increasing steps pR,inc equals 0.5. The initial distribution of the Markov chain then amounts
to

qR(0) = P(R(0) = R) = 1

2G

(
G

R

)
, R ∈ S. (56)

The time evolution of the Markov chain is given by the equation q(t) = P tq(0) for each
outer round t � 0. In particular, the time evolution of the probability distribution q(t) in
dependence of the normalized overlap is shown in figure 11. When the parameter N is odd,
the Markov chain converges to one of two absorbing states R = 0 and R = G, both with
probability q0(t) = qG(t) = 0.5 (figure 11(a)). When the parameter N is even, the Markov
chain converges to the absorbing state R = G with probability qG(t) = 1 (figure 11(b)).

Third, we study the number of outer rounds required to achieve synchronization; that is,
the number of steps until the Markov chain reaches an absorbing state. Let T denote the set
of transient states. By the proof of convergence of the Markov chain, T = {1, . . . ,G − 1} if
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Figure 11. Time evolution of the Markov chain in dependence of normalized overlap for the
parameter G = 64. (a) N = 3, (b) N = 4.

the parameter N is odd, and T = {0, . . . ,G − 1} otherwise. Define the transient matrix of the
Markov chain as U = (uR,R′)R,R′∈T , where uR,R′ = pR,R′ denotes the transition probability.

Let νR denote the random variable that describes the number of steps in which the Markov
chain is a transient state starting from the initial state R. For an absorbing Markov chain, the
expected value of this variable is given by [14, section 3]

E(νR) =
∑
R′∈T

lR,R′ , R ∈ T , (57)

where L = (lR,R′)R,R′∈T = (I − U )−1 and I is the identity matrix.
This expectation is illustrated in figure 12 as a function of the normalized overlap ρ = R/G

for some values of the parameter N. When the parameter N is odd, the expectation E(νR) is
symmetric around the overlap ρ = 0.5, E(νR) = E(νG−R), due to the symmetry of the
probability of increasing steps (49). Moreover, the expectation E(νR) attains the maximum at
the overlap ρ = 0.5, and becomes minimal when the state vectors have maximal (ρ = 1) or
minimal (ρ = 0) overlap (figure 12(a)).

When the parameter N is even, the expectation attains the minimum at ρ = G−1
G

with a
minimum value E(νG−1) = 1. Furthermore, the parameter N and the expectation increase
with the same order of magnitude. In particular, the expectation for small overlaps becomes
very large, when compared with the case of N odd (figure 12(b)). The reason is that when N
is large, then by (34) q0,N tends to 0 and thus the probability of decreasing steps (51) tends
to 1. It follows that the transition probability p0,0 tends to 1, too. That is, the transient state
R = 0 tends to become an absorbing state such that the states near R = 0 almost form a
so-called closed subset M ⊂ S with the property

∑
R′∈M pR,R′ ≈ 1 for each R ∈ M; the

probability of leaving M given that the chain started in a state belonging to the closed set M is
almost 0 [14].

Let Xsync denote the random variable which describes the number of outer rounds required
to achieve synchronization given an initial distribution q(0) of the chain. The expected value
of the random variable Xsync is given by

E(Xsync) =
∑
R∈T

E(νR) · qR(0), (58)

where qR(0) is the probability to start in the initial state R. The expectation E(Xsync)

behaves logarithmically with respect to the parameter G (figure 13). In contrast to this,
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Figure 12. Expected value of the number of outer rounds as a function of the initial overlap, for
the parameter G = 64. (a) N odd, (b) N even.
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Figure 13. Expected value of synchronization time E(Xsync) as a function of the parameter G.

the synchronization time of the learning process between tree parity machines is proportional
to both, ln KN and L2 for K � 3 [16] (section 2).

Fourth, we need a criterion showing convergence of the mutual learning process, given the
fact that the partners cannot directly compare their state vectors in order to verify alignment.
When the networks are synchronized, the probability of synchronization steps psync becomes
1 and from (52) it follows that P(X = T ) = 1 in the case of T = G. Thus when the networks
exchange their outputs exactly G times to fill their buffers, we can assume that the mutual
learning process has converged. In contrast to this, the learning process between two tree
parity machines makes use of an empirical criterion which implies that the outputs of the
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networks must agree during a certain number of consecutive learning steps (usually 100–400
steps) in order to presume synchronization [2, 7].

Finally, in the case of an anti-parallel alignment of the state vectors when the number
of inputs N is odd, an additional learning step is required to make both state vectors equal.
This step can be provided by a simple parity verification which can be performed without
an additional exchange of information between the networks. For this, take a mapping
f : {0, 1}G → {0, 1}G with the property

f (s) = f (s), s ∈ {0, 1}G, (59)

where the binary complement is taken component-wise. Such a mapping is called even. If
sA = sB , then we have

sA ⊕ f (sA) = sB ⊕ f (sB) = sB ⊕ f (sB) = sB ⊕ f (sB). (60)

Consequently, if the state vectors s and their images f (s) are added (exclusive or), the derived
vectors s ⊕ f (s) will be the same in both networks. A typical even function is given by the
assignment f : (s1, . . . , sG) �→ (s1 ⊕ sG, . . . , sG ⊕ sG); in this case, the last bit in each state
vector becomes 0.

5. Conclusions

We introduced the permutation parity machine as a binary variant of the tree parity machine.
Its learning rule involves inner and outer rounds that makes the permutation parity machines
suitable for bit-packaging implementations without affecting the dynamics of the learning
process.

Neural synchronization of permutation parity machines was proved for networks with
two hidden units, regardless of the number of inputs and the length of the state vectors.
The dynamics of the learning process between two permutation parity machines significantly
depends on whether the number of inputs is even or odd; it crucially affects the probability
distribution of the state vectors after synchronization. In both cases, this process is a result
of competing stochastic forces given by increasing and decreasing steps, but while two
permutation parity machines with an even number of inputs achieve synchronization by the
dominance of the increasing steps, if the number of inputs is odd, the process exhibits a
bivergent behavior, in which synchronization is attained in one of two possible alignments,
both with the same probability.

The dynamics of the mutual learning process of permutation parity machines with two
hidden units (K = 2) is not significantly influenced by the length G of the state vectors,
especially in the case of G � N . The process mainly depends on the number of inputs per
hidden unit and on the overlap.

The synchronization time of the mutual learning process depends on the parameters G and
N and whether N is even or odd. The length G of the state vectors directly affects the number
of inner rounds required to fill the buffer, while the number of outer rounds is influenced by
the number of inputs N and increases proportional to ln G. In particular, if the number of
inputs per hidden unit N is even and large, the synchronization time significantly increases.

Permutation parity machines make use of a more complex learning rule than that of tree
parity machines, especially due to the necessity to extract entries from the respective state
vectors at random. This issue becomes particularly important when the machines will be
implemented in hardware. However, this step can be easily implemented by using a linear
feedback shift register. Nevertheless, the simplicity of the network compensates for the
complexity of the learning rule. Moreover, the synchronization of two permutation parity

19



J. Phys. A: Math. Theor. 42 (2009) 195002 O M Reyes et al

machines can be detected with certainty by counting the number of learning steps, while there
is no such simple criterion for tree parity machines.

In view of neural synchronization, permutation parity machines form a viable alternative
to tree parity machines. In a forthcoming paper, we will study the application of permutation
parity machines to symmetric key exchange.
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